Resources

Technical Papers

75. Structural Control Using Hybrid Spring-Damper Isolator with Integral Gapping Function

The spring-damper isolators described in this paper were used on the world's largest cable stayed bridge - the Sutong Bridge over China's Yangtze River, completed in 2008. The Sutong Bridge is located north of Shanghai in China's Jiangsu Province at a site where catastrophic earthquakes, typhoons, and ship impact are key design issues. The total length of the bridge is 4.7 miles, with a .67 mile long center span. The tall support towers of this bridge and the long support cables create long period motions along the primary axis of the bridge. The need to accommodate thermal expansion and contraction of the deck axially means that extensive motion can occur in this direction. The configuration of the bridge permits large axial motion of the suspended deck during earthquakes, typhoons, and synchronized truck/car braking loads such as would occur during a mass vehicular accident on the bridge. During dynamic earthquake loading, the long period of the suspended deck provides inherent isolation, albeit essentially undamped. Analysis indicated that added viscous damping would reduce deck motions substantially. During other events like typhoons and vehicle loading, analysis determined that the most cost-effective solution was to incorporate a snubbing type spring element that would only engage (become active) when the damper was approaching its end of travel in either extension or compression. The spring-dampers on this bridge have only damping forces for roughly 85% of the available displacement from the neutral (center of travel) position. Beyond this travel the spring element engage and a combined response of spring plus damper forces results. Essentially, the spring elements are "gapped" through all but approximately the last 15% of the damper stroke in either direction.

Share This Post

More To Explore

White Paper

30. Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring Force/Damping Devices

This report describes an experimental study of the behavior of a bridge seismic sliding isolation system consisting of flat sliding bearings and fluid restoring force/damping devices. Earthquake simulator tests were performed on a model bridge structure both with isolators and without. The experimental results demonstrate a marked increase of the capacity of the isolated bridge to withstand earthquake forces. Analytical techniques are used to predict the dynamic response of the system and the obtained results are in very good agreement with the experimental results.

Read More »
White Paper

31. Study of Seismic Isolation Systems for Computer Floors

This report describes the development and testing of a computer floor seismic isolation systems which uses existing devices developed for the seismic isolation of buildings and shock isolation of military equipment. A computer floor system with raised floor and a generic slender equipment cabinet was constructed. It was isolated by spherically shaped sliding bearings and was highly damped either by utilizing high friction in the bearings or by installing fluid viscous dampers. The spherically shaped bearings provided the simplest means of achieving long period in the isolation system under low gravity load. The isolation system prevented rocking of the cabinet on top of the isolated floor and substantially reduced its acceleration response in comparison to that of a conventional computer floor. An analytical study was also conducted in order to extend the results to a range of parameters which could not be tested.

Read More »
White Paper

32. Application of Fluid Viscous Dampers to Earthquake Design

This article summarizes the extensive viscous dampers investigation performed by NCEER at State University of New York, Buffalo Campus. This included computer modeling of both the dampers and complete isolated systems, along with shake table testing and correlation of results. The article also describes a very large damper projects; dampers + base isolation for a set of five hospital buildings near San Bernardino, CA.

Read More »
White Paper

34. Fear of Trembling

This article describes the effects of both Kobe earthquake and the Northridge earthquake in detail, including technical and economic details. It also discusses building codes and practices and what is being done around the world to decrease the risk of severe seismic damage.

Read More »

Thank You!

A Taylor Devices Representative will be in touch shortly.