Search
Close this search box.
Products
Crane & Industrial Buffers

Heavy Duty Crane & Industrial Buffer Solutions

In a modern steel plant, maximum productivity requires maximum equipment capacity and high operational speeds. In the case of the steel mill overhead traveling crane, higher capacity and higher speed has greatly increased the potential for collisions.

Almost all electric traveling cranes utilize some sort of industrial buffer or bumper for the purpose of eliminating or minimizing damage. Protection of this type is required for three major types of collisions:

  1. Crane to Crane
  2. Crane to Building
  3. Trolley to Bridge End Stop

 

A crane bumper (or industrial buffer) is a device installed for the purpose of absorbing the energy of a moving crane, thereby protecting the crane, the building it may operate in, and personnel in the immediate area from damage caused by collision.

The hydraulic crane bumper has proven itself to be the most reliable and least costly method of protecting crane, operator, and plant from the hazards of crane collisions, even under 100% full speed impact conditions.

These large Fluidicshok type buffers and coil spring reset with capacities of up to 14,000,000 inch-pounds are available in a heavy-duty mill-type design. Over 60 sizes are standard. Long stroke buffers are available with up to 120-inch deflections and capacities to one hundred million inch-pounds, making this the highest capacity standard shock absorber in the world.

Taylor Devices’ industrial buffers are fluidic type shock absorbers designed for heavy duty, severe service applications. They absorb the total impact energy of the application and convert this energy to heat. After impact, internally mounted coil springs gently restore the buffer to its original un-stroked condition.

W-Series Crane Buffers

Known as the “Ultimate Shock,” our W-Series crane buffers are our standard buffers for absorbing impacts. Uses include overhead crane buffers, car stops, elevator buffers, and much more.

Custom Crane Buffers

Taylor Devices also offers custom crane buffers for just about every application. If you are unsure about which crane buffer you will need, please contact our team today for more information. 

Two industrial crane buffers

Additional Crane & Industrial Buffer Information

Optional mounts can be ordered such as:  foot, front flange, and side mounted adapted bracket are also available. AIST crane specifications provide for crane buffers mounted on adjacent sides where bridges or trolleys come together. Please specify if this condition is applicable. 

Special sizes available to 60 in. stroke and 60 million in-lb capacity. Consult factory for details. If you desire, Taylor engineers can recommend a crane or industrial buffer for specific needs. Call us or submit your information now to take advantage of this free service.

Our team is ready to take on your next big project.

Need Assistance?

Download

Please download the PDF document below.

Fill It Out

Please complete the PDF to the best of your ability.

Send It In

Complete the online form and attach the completed file.

or

Give Us a Call Today!

+1 716 694 0800

Need Assistance?

Please fill out the following information below to the best of your ability and submit for more information about our crane buffers.

Crane Buffer Selection Work Sheet

General Information

Crane Information

Trolley Information

Bridge Information

Other Remarks

W-SERIES
CRANE BUFFERS

CUSTOM
CRANE BUFFERS

Investor Information

2020 Q4 Important Links

Investor Information

2019 Q4 Important Links

Investor Information

2020 Q1 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q3 Important Links

Craig Winters

Program Manager – Structural Products

 

Responsibilities

  • Manages all aspects of Structural Projects along with providing full customer service/support.
  • Progresses damper projects from contract execution through completion and interactions throughout the life of any structural project.

Experience

  • 30 years Developing and Building the structural damper market, along with design, manufacturing, testing, and selling of fluid damper products.
  • Managed and supervised over 800 damper projects from inception to completion using specialized devices for structural control of civil engineering structures, including hundreds of applications to improve performance under wind, seismic, pedestrian and traffic shock or vibration, for numerous industrial and structural applications, found on/in buildings, bridges, stadiums, towers, hospitals and many other types of structures.
  • Directed and managed a national and international (world-wide) network of representatives, supporting them with business development, sales visits, technical support, advertising, promotion and general marketing efforts for their various marketplaces.
  • Provided Corporate Representation and Presentations at numerous conferences and meetings annually, including those held by SEAOC, ASCE, AIST, EERI, CTBUH, IBC, and many other international bodies.
  • Publications and Presentations include papers on structural design and control of building and bridge structures including response spectrum analysis/design.

Education

  • MS in Civil/Structural Engineering from University at Buffalo
  • BS in Civil Engineering from University at Buffalo
  • BS in Physics from Fredonia State University

Affiliations

  • SEAOC – Structural Engineers Association Of California
  • ASCE – American Society of Civil Engineers
  • AIST – Association for Iron & Steel Technology
  • EERI – Earthquake Engineering Research Institute
  • CTBUH – Council on Tall Buildings and Urban Habitat

Interests

  • Running 5k and Half-Marathons, Snow-Skiing, Boating and Slalom Waterskiing, Mountain Biking, Hiking, Kayaking and Canoeing, Camping, Sport-Bike (Motorcycle) Riding, and Craft-Beer “tasting”.  Winter weekends are spent coaching Downhill Ski Racing to youths.

Marcus Freeman

Technical Director

Responsibilities

  • Lead technical support efforts for structural engineers in areas of structural analysis with dampers, damper design, peer review and damper implementation (construction) for both new and retrofitted structures
  • Develop technical resources and guidelines for Taylor Damped Moment Frame design
  • Lead Research and Development efforts in advancing Damper implementation in building design

Experience

  • 8 years Structural Engineering design, analysis, and construction administration work with Magnusson Klemencic Associates
  • Lead design engineer experience on high rise residential, convention center, and aviation buildings in high seismic location
  • Registered Professional Engineer in Washington
  • Proficient with the design and detailing of steel moment frames, brace frames, and shear wall systems

Education

  • Virginia Polytechnic Institute and State University Master of Science, Civil Engineering, 2015 Specialization: Structures
  • Virginia Polytechnic Institute and State University Bachelor of Science, Civil Engineering, 2013

Affiliations

  • Structural Engineering Engagement and Equity Committee (NCSEA), Chair, 2021-present
  • SEAW Young Member Group, President, 2017-2018
  • NCSEA Susan Ann “Susie” Jorgensen Presidential Leadership Award – Nov 2023 Issued by National Council of Structural Engineers Associations (NCSEA)

Interests

  • Travel, live music, wine and bourbon tasting, cooking, vinyl collecting

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q4 Important Links

Investor Information

2022 Q1 Important Links

 

Konrad Eriksen

Structural Products Sales Director

Responsibilities

  • Heads up the Structural Business Development Team.
  • Develops Damper projects in the building, bridge and infrastructure markets from concept design through to contract execution.

Experience

  • 35 year’s experience in selling, development and manufacturing of dampers and base isolation systems throughout the world.
  • Built and ran Base Isolation and damper manufacturing facilities in New Zealand and USA.
  • Built and ran a BRB manufacturing plant in USA, contracting to Nippon Steel.
  • Developed and patented 2D and 3D isolation systems for equipment and supercomputers.
  • Introduced, manufactured, and tested viscous dampers through a technology transfer with a Japanese partner for the CPMC Hospital, CA.
  • Designed and built test rigs and presses with up to 4400-ton capacity.
  • 10 years of commercial construction engineering in Wellington, New Zealand specializing in constructability challenges, foundation design, concrete durability.
  • Extensive background in rigging, erecting tower cranes and structural steel.  Designed and executed heavy lifts.

Education

  • Bachelor of Engineering (civil) Canterbury University, New Zealand

Affiliations

  • Structural Engineers Association of Northern California (SEAOC)
  • Earthquake Engineering Research Institute (EERI)

Interests

  • Enduro motorcycling, restoring, building and riding Ducati motorcycles, playing guitar, fishing, shooting, hunting, woodworking.

Nathan Canney

Director of Structural Engineering

Responsibilities

  • Train and manage structural engineering team at Taylor to assist engineers in analysis with dampers.
  • Educational outreach and support for structural engineers interested in using dampers for seismic or wind applications.

Experience

  • Structural engineering design work at Magnusson Klemencic Associates (2 years), CYS Structural Engineers, Inc.(3 years) and various internships at Parsons Brinckerhoff Quade & Douglas, MA Wright Engineering, and Forel/Elsesser Engineers, Inc.
  • Registered Professional Engineering in California
  • Experience in structural design for new construction and retrofits, steel, concrete, wood and masonry structures. Design experience for seismic and wind using US and international codes.
  • Faculty in the Department of Civil and Environmental Engineering at Seattle University for four years, teaching undergraduate and graduate students courses including Statics, Mechanics of Materials, Residential Design, Ethics, Performance Based Earthquake Engineering and Building Systems.
  • Research focused on engineering education, engineering ethics and identity formation. Over 70 peer reviewed publications in conference proceedings and journals.

Education

  • Ph.D. in Civil Engineering, University of Colorado, Boulder – 2013
  • M.S. in Structural Engineering, Stanford University – 2010
  • B.S. in Civil Engineering, B.S. in Applied Mathematics, Seattle University – 2006

Affiliations

  • Structural Engineers Association of Central California (SEAOCC)
  • American Society of Civil Engineering (ASCE)
  • American Society for Engineering Education (ASEE)

Interests

  • Woodworking, family time, cooking spectacular meals, backpacking, travel and photography.
Ben Covich Headshot

Ben Covich

Senior Project Engineer

Responsibilities

  • Assists engineers and clients with damper design, technical support, and pricing.
  • Conduct Non-linear Time History Analysis to verify damper designs.
  • Manage building, bridge and other infrastructure projects from inception to hand off at production.

Experience

  • Design of damper systems using ETABs and Modal Strain Energy methods.
  • Base isolation design (Lead Rubber Bearings and Sliding Pendulum Bearings).
  • Managed full scale testing projects at UCSD for Lead Rubber Bearings and iRDT dampers.
  • Designed, project managed, and full scale tested 2D and 3D isolation platforms at The University of Nevada Reno (UNR).
  • Seismic design of shear wall, reinforced concrete and steel structures in New Zealand.
  • Auto CAD drafting
  • Qualified New Zealand Carpenter focusing on renovation of high end residential homes, Historic Buildings and large scale commercial projects.

 

Education

  • Bachelor of Engineering (Civil), B.E (Hons), The University of Auckland – 2018
  • New Zealand Diploma of Engineering, N.Z.D.E (Civil) – 2014
  • New Zealand Certificate in Carpentry – 2012
  • Seismic Isolation Course CEE729 at UNR – 2020

Affiliations

  • New Zealand Society of Earthquake Engineers (NZSEE)
  • Structural Engineers Association of California (SEAOC)
  • National Council of Structural Engineers Association (NCSEA)
  • Earthquake Engineering Research Institute (EERI)

Interests

  • Anything Motorsport, Midget Racing in California and maintaining a racecar (2023 USAC Western States – Rookie of the Year) Motorcross, BBQ, House Project, Travel

Anthony Tiapon

Senior Project Engineer

Responsibilities

  • Supports clients and engineers with damper design by answering technical questions, providing ETABS support and providing pricing.
  • Performs Non-linear Response History Analysis in ETABS for verifying damper designs.
  • Generates educational materials regarding damper design.

Experience

  • 6 years of structural engineering design work at CYS Structural Engineers, Inc.
  • Experience with seismic and wind design.
  • Structural design experience in retrofit, wood, and steel structures.
  • Registered Professional Engineering in California.

Education

  • B.S. in Architectural Engineering, California Polytechnical State University, San Luis Obispo – 2016

Affiliations

  • Structural Engineers Association of California (SEAOC)
  • National Council of Structural Engineers Association (NCSEA)

Interests

  • Running, working out, hiking, going to concerts and museums, spending time with my dog.

Investor Information

2021 Q1 Important Links