RESOURCES

Fluid Viscous Dampers

White Paper

103. Validation of the 2000 NEHRP Provisions’ Equivalent Lateral Force and Modal Analysis Procedures for Buildings with Damping Systems

Equivalent lateral force and modal analysis procedures for yielding buildings with damping systems were developed, validated, and incorporated in the 2000 NEHRP Provisions. Key to the implementation of the procedures was the validation process that demonstrated the accuracy of the proposed procedures. The procedures for implementing yielding, viscoelastic, linear viscous, and nonlinear viscous dampers were tested using the results of nonlinear response history analysis on sample three- and six story frames and were found to be robust.

Case Study

102. TORSIONAL CONTROL OF TWO ADJACENT OFFICE BUILDINGS USING VISCOUS DAMPERS

Two adjacent wings of a three story office building in Southern California were found by analysis to be excessively responsive in torsion under an earthquake on the near-by Newport-Inglewood fault, some five miles from the site. The generous 4.5″ seismic separation between the two office building segments was found to be inadequate to prevent heavy pounding even in a moderate event, having a high probability of occurrence at this location. A variety of structural retrofit schemes were evaluated to mitigate the excessive torsional responses of the two building segments. These included converting the perimeter gravity frames to moment resisting frames, adding diagonal bracing to the perimeter frames, tying the two structures together at each floor level, and using viscous dampers as attachments between the buildings. The best solution from a cost, schedule, construction disruption, and earthquake performance standpoint, turned out to be joining the two building segments with horizontally oriented viscous dampers at a single floor level. This paper describes the analysis and retrofit solution that was used, and discusses the advantages and disadvantages of the retrofit options studied.

Technical Brief

101. Use of Motion Amplification Devices and Fluid Dampers to Reduce the Wind Induced Response of Tall Buildings

Adding damping with various energy dissipating devices has become an accepted method to reduce wind induced vibrations in tall buildings. An example of a 39-story office tower is presented where large projected accelerations generated by the vortex shedding of an adjacent existing 52-story building are reduced by a passive system composed of viscous dampers and a motion amplification system. A description of the damping system and its analytical complexities are discussed. Non-linear analysis of the tower, using time history forcing functions derived from the wind tunnel is presented. Cost data for the damper system is also presented.

White Paper

100. SHOCK CONTROL OF BRIDGES IN CHINA USING TAYLOR DEVICES’ FLUID VISCOUS DEVICES

Fluid Viscous Devices have been found to be a highly effective protection system for bridges. Introduced to China in 1999, the Taylor Devices damper systems have been successfully installed or will be installed in both large and super large bridges in China for protection from earthquake, wind, vehicle and other vibration. Seventeen different bridge projects include the Sutong Yangtze River Bridge, the longest cable stayed bridge in the world, the Nanjing 3rd Yangtze River Bridge, the fifth longest suspension bridge in the world, and the Xihoumen across Sea Bridge, the second longest suspension bridge in the world. The performance of the bridges and dampers have been reported as “very good” during the May 12, 2008 Wenchuan earthquake. All of the dampers produced have been subjected to rigorous static and dynamic testing, which show the dampers will perform well for the next 50 years and possibly much longer.

Case Study

98. Seismic Protection System and its Economic Analysis on the Beijing High-Rise Building Pangu Plaza

Pangu Plaza, located at Beijing close to 2008 Olympic main stadium, is a 191 meter, 39-story steel high rise building. It was analyzed under earthquake and wind loads with both Fluid Viscous Dampers (FVD) and Buckling Restrained Braces (BRB or UBB) as the seismic protection system. The complete seismic response on the horizontal and vertical directions showed that the Fluid Viscous Dampers are highly effective to reduce the structural response, as well as the secondary system response. A comparative analysis of structural seismic performance and economic effect was considered, by the traditional method of increasing steel columns and beams size; by using BRB’s and by using FVD’s to absorb the seismic energy. Structural response analysis showed that using FVD’s to absorb the seismic energy made the structure satisfy the Chinese seismic design code for the “rare” earthquake and also greatly improved the seismic performance. Economic analysis showed that FVD’s were the most economic approach for both one-time direct investment and long term maintenance.

White Paper

97. SCISSOR-JACK-DAMPER ENERGY DISSIPATION SYSTEM

Installation of damping devices has been limited to diagonal or chevron brace configurations until the recent development of the toggle brace. This configuration magnifies the effect of damping devices, thus facilitating their use in stiff framing systems. This paper introduces the scissor jack damper system that was developed as a variant of the toggle-brace damper system, with the added advantage of compactness. The effectiveness of the scissor jack configuration is demonstrated through testing of a large scale steel framed model structure on an earthquake simulator. Experiments showed that despite the small size of the damping device considered, the scissor jack system provided a significant amount of damping and substantially reduced the seismic response of the tested structure. Response history and simplified analyses produce results that are consistent with the experimental results.

Uncategorized

95. Optimized Damping Device Configuration Design of a Steel Frame Structure Based on Building Performance Indices

Energy dissipation devices (EDDs) have been accepted as one of the viable strategies for enhancing the seismic performance of building structures. However, current design provisions do not provide guidelines for optimizing the EDD configurations. For many building structures an efficient configuration of EDDs may provide considerable performance improvement. Similarly, an optimized configuration may reduce the number of EDDs required to achieve a target performance objective. In this paper an existing building with added linear viscous dampers is redesigned based on different performance index optimization. The results indicate that the optimal device configurations are highly related to the dynamic properties of the structure and its required performance index. In one instance, where the cost is the major concern and a performance requirement is placed on story drift limitation, the total device damping coefficient can be reduced by 26%.

Technical Brief

94. A Simple Method for the Design of Optimal Damper Configurations in MDOF Structures

Existing methods for the design of optimal configurations of supplemental dampers are usually not simple enough to be used routinely, and typically lead to different damper sizes at virtually every story. This can be avoided with the Sequential Search Algorithm, which lets the designer control the number of different damper sizes. In this paper, a simplification to the Sequential Search Algorithm is developed. This Simplified Sequential Search Algorithm makes it easy for engineers to deal with damper added structures. It was found that the efficiency of damper configurations given by the proposed Simplified Sequential Search Algorithm is comparable to the efficiency of damper configurations given by more sophisticated procedures. The applicability of the method is limited to those cases where the response of the structure with added dampers remains linear.

White Paper

93. Experimental Study of RC Building Structures with Supplemental Viscous Dampers and Lightly Reinforced Walls

This paper describes an experimental evaluation of viscous dampers used to reduce seismic motion in reinforced concrete moment-resisting building structures. Common practice in Taiwan is to use lightly reinforced concrete exterior walls and interior partition walls, which not considered for their contribution of stiffness and strength in the design process. As these additional walls greatly reduce relative story displacement and velocity, it has been suspected that the effectiveness of supplemental dampers would be very limited. However, the test results show that a new displacement multiplying mechanism, the toggle brace damper system, is effective even with a small relative story drift in the seismic response control of the structure. Dampers produce significant force and displacement reduction in the moment-frame structures that were investigated.

White Paper

92. Energy Dissipation Systems for Seismic Applications

This paper presents a summary of current practice and recent developments in the application of passive energy dissipation systems for seismic protection of structures. The emphasis is on the application of passive energy dissipation systems within the framing of building structures. Major topics that are presented include basic principles of energy dissipation systems, descriptions of the mechanical behavior and mathematical modeling of selected passive energy dissipation devices, advantages and disadvantages of these devices,
development of guidelines and design philosophy for analysis and design of structures employing energy dissipation devices, and design considerations that are unique to structures with energy dissipation devices. A selection of recent applications of passive energy dissipation systems is also presented.

Thank You!

A Taylor Devices Representative will be in touch shortly.