RESOURCES

Fluid Viscous Dampers

White Paper

90. Rehabilitation of a 1985 Steel Moment Frame Building

A 1985 steel moment frame was seismically upgraded using passive energy dissipation, without adding stiffness to the system. The design and analysis techniques for sizing the Velocity Braces and their impact on the demand capacity ratios are reviewed in this paper. The original structure was built in the San Francisco Bay Area in compliance with the 1985 Uniform Building Code (UBC). The moment frame contains the classic pre-Northridge nonductile moment connection. Nonlinear time history analysis was used to design a damper system that provides a significant decrease in seismic response.

Technical Brief

88. Seismic Performance of Light Framed Wood Structures with Toggle-Braced Fluid Dampers

In recent years, seismic damping systems have been employed in numerous steel and concrete framed buildings. Such systems dissipate a significant portion of the seismic input energy, thereby relieving the energy dissipation demand on the structural framing system and thus reducing damage. As part of a NEESR project to develop a performance based approach to seismic design of multi-story light framed wood structures, the application of damping systems to such structures has been evaluated via seismic shaking table tests and numerical simulations. This paper focuses on the results from shaking table tests of shear walls employing toggle braced fluid dampers. The results demonstrate that toggle braced fluid dampers provide a significant increase in the seismic resistance of the walls, allowing them to achieve high levels of performance when subjected to strong ground motions.

White Paper

87. Fluid Dampers for Seismic Protection of Woodframe Structures

In the recent past a large number of steel framed buildings have used supplemental energy dissipation systems to provide seismic protection. However, the application of such systems to wood frame structures has been essentially non-existent except for a limited number of experimental laboratory studies. This paper presents a numerical study of the application of fluid dampers for seismic protection of wood framed structures. Such dampers dissipate energy via orificing of a fluid. The seismic response of a wood framed shear wall with and without dampers is evaluated via nonlinear finite element analyses. The results of the analyses demonstrate that the dampers are capable of dissipating a large portion of the seismic input energy while simultaneously relieving the inelastic energy dissipation demand on the shear wall.

White Paper

82. Full-Scale Shake Table Tests of 5-Story Steel Building with Viscous Damping

Realistic simulations of earthquake responses were conducted in March 2009 for a full-scale 5-story building specimens with dampers using the E-Defense, the world’s largest three-dimensional shake table. The building was tested repeatedly, inserting and replacing each of 4 damper types, steel damper, oil damper, viscous damper and viscoelastic damper. This paper discusses the test method and test results as well as details of the 5-story building specimen. Performance improvement by the dampers is addressed for moderately tall buildings that constitute a major portion of the building stock.

White Paper

79. Fluid Viscous Dampers: An Effective Way to Suppress Pedestrian-Induced Motions in Footbridges

Fluid viscous dampers have found commercial applications on buildings and bridges subject to seismic and/or wind storm inputs. They are now being used as well on footbridges to suppress undesirable pedestrian induced vibrations. This paper provides a brief overview of fluid damping technology with specific case studies for pedestrian bridges now equipped with fluid viscous dampers. These viscous dampers are used to suppress the feedback between the pedestrians and the bridge and/or wind induced vibrations. On-site tests show that fluid viscous dampers provide significant gains in performance at relatively low cost.

White Paper

71. Seismic Protection with Fluid Viscous Dampers for the Torre Mayor, a 57-Story Office Tower in Mexico City, Mexico

The new 57 story Torre Mayor Building is the now the dominant structure in the Mexico City skyline. It is also the first tall building to utilize large Fluid Viscous Dampers as a primary means of seismic energy dissipation. A total of 98 dampers are used, including 24 large dampers, each rated at 570 tonnes of output force, located in the long walls of the building. The short walls utilize 74 smaller dampers, each rated at 280 tonnes of output force. The damping technology successfully implemented for Torre Mayor is now being used on five other tall buildings, including three in the USA, and two in Japan.

Case Study

70. Seismic Rehabilitation of Historic Concrete Structure with Fluid Visco-Elastic Dampers

This paper presents the nonlinear seismic analysis, development, and implementation of an innovative seismic retrofit strategy for a six story nonductile reinforced concrete 145,000 square foot historic building. Dynamic and nonlinear static analytical results verified that the building had a weak soft story with inadequate post yield capacity and large torsional response. Hotel Stockton, in Stockton, CA, is also torsionally irregular. The analysis indicated that the existing building was not seismically adequate to withstand anticipated lateral forces generated by earthquake excitations at the site. A “collapse prevention” performance upgrade for a 475-year return event was developed. Nonlinear fluid viscous dampers were placed at the first story level to reduce the seismic demand and obtain a more uniform response. Viscoelastic fluid viscous dampers were strategically placed at one side of the building to reduce the torsional irregularity of the building. This cost effective retrofit significantly improved the seismic performance of the building.

Case Study

67. U.S. Design of Structures with Damping Systems

This paper presents an earthquake design procedure and a case study of the Vacaville Police Headquarters. The design goal for this essential facility was to provide immediate occupancy after a 475-year return seismic event. The project also required construction cost within typical code conforming buildings. A combination of Special Moment Resisting Frames (SMRF) and Fluid Viscous Dampers (FVDs) was used as the lateral force resistance system. This system, as described by Gimmel, Lindorfer, and Miyamoto, (2002) results in cost efficiency and superior seismic performance. The 2000 NEHRP (FEMA, 2000) guideline was used to design the project, since it is considered to be a state-of-art procedure for seismic damping devices. This project was the first structure in the United States to use this advanced procedure.

Thank You!

A Taylor Devices Representative will be in touch shortly.