Search
Close this search box.
RESOURCES

Isolation Systems

White Paper

31. Study of Seismic Isolation Systems for Computer Floors

This report describes the development and testing of a computer floor seismic isolation systems which uses existing devices developed for the seismic isolation of buildings and shock isolation of military equipment. A computer floor system with raised floor and a generic slender equipment cabinet was constructed. It was isolated by spherically shaped sliding bearings and was highly damped either by utilizing high friction in the bearings or by installing fluid viscous dampers. The spherically shaped bearings provided the simplest means of achieving long period in the isolation system under low gravity load. The isolation system prevented rocking of the cabinet on top of the isolated floor and substantially reduced its acceleration response in comparison to that of a conventional computer floor. An analytical study was also conducted in order to extend the results to a range of parameters which could not be tested.

White Paper

30. Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring Force/Damping Devices

This report describes an experimental study of the behavior of a bridge seismic sliding isolation system consisting of flat sliding bearings and fluid restoring force/damping devices. Earthquake simulator tests were performed on a model bridge structure both with isolators and without. The experimental results demonstrate a marked increase of the capacity of the isolated bridge to withstand earthquake forces. Analytical techniques are used to predict the dynamic response of the system and the obtained results are in very good agreement with the experimental results.

White Paper

27. University at Buffalo – Taisei Corporation Research Project on Bridge Seismic Isolation Systems

This paper describes the first part of a project to produce a class of passive sliding seismic isolation systems for bridges. This includes experimental verification of the systems by large scale shake table testing, analytical techniques for interpretation of the experimental results, and design procedures for sliding bridge isolation systems. A quarter length scale bridge model was tested on a shake table. Restoring force was provided by various means. First, spherically shaped sliding bearings (known as FPS bearings) were used to provide restoring and frictional forces within a compact unit. Next, flat sliding bearings were combined with various devices placed between the deck and the pier to provide restoring force and additional energy dissipation capacity. These devices were in the form of: a) arc-shaped rubber elements between a moving central rod and a cylindrical housing, b) wire rope springs, c) fluid spring-damper devices and d) fluid viscous dampers.

White Paper

23. Semi-Active Fluid Viscous Dampers for Seismic Response Control

The addition of passive damping to a structure greatly increases its earthquake resistance. It is possible to get further increase through an active or semi-active control system for the dampers. Semi-active damping is preferred due to low external power requirements and fail-safe operation. This paper describes the history of the successful use of semi-active fluidic control devices in military applications and how this technology has been adapted to earthquake hazard mitigation. Testing of a semi-active continuously adjustable damping device through fluid orificing is described. Mathematical models of the behavior of the device are also presented.

White Paper

20. Seismic Isolation of Bridges

This unpublished paper by Dr. Michael Constaninou describes the seismic protection of a steel multi-girder highway bridge. Three types of base isolators are included; high damping rubber, lead-rubber and Friction Pendulum. The effect of added viscous damping is also investigated, and is found to greatly enhance the performance of the isolators, even though the dampers required are rather small. This classic paper is hand written by Dr. Constantinou and includes his calculations and his sketches of the bridge, isolation devices and dampers.

White Paper

15. Reduction of Shock Response Spectra Using Various Types of Shock Isolation Mounts

This experiment demonstrated how various types of shock absorbers can reduce the overall shock response spectra of a structure subjected to high impact shock. This was accomplished by measuring the acceleration on a weight dropped onto three different shock absorbers from various heights and analyzing the resulting data. A baseline test was performed with a steel hard mount. This was followed by tests with three different soft isolation mounts; a half inch thick neoprene pad, a urethane rubber tube on its side and a hydraulic liquid spring type shock absorber. Results show that both the dominant frequencies and the peak acceleration get lower as the isolation system gets softer. This information can be valuable in the design of isolation systems.

Technical Brief

14. Precise Positioning Shock Isolators

Conventional approaches to the shock isolation of delicate systems often involve the use of low frequency shock mountings. This type of mounting is not usable on systems where precise alignment must be maintained over a long period of time. This paper describes a new type of isolator which combines excellent attenuation with the ability to precisely maintain system alignment in the pre and post shock environment. This new shock absorber acts as a rigid link under normal conditions. Then, when a shock occurs, it strokes in both tension and compression with damping in both directions. After things calm down the shock returns precisely to its original length. Computer simulation and test results are included.

White Paper

2. Bridge Design

This paper reports on a non-linear analysis of a bridge supported on sliding bearings with elastomeric restoring spring and viscous dampers. Results were verified with shake table tests.

Product Info

1. Application of Energy Dissipating

The design of a structure or mechanism subjected to shock and vibration can be greatly improved by the addition of isolation or damping devices. Improvements Include: Reduced Deflection and Stresses, Reduced Weight, Improved Biodynamics, Longer Fatigue Life, Architectural Enhancement and Reduced Cost.

Craig Winters

Program Manager – Structural Products

 

Responsibilities

  • Manages all aspects of Structural Projects along with providing full customer service/support.
  • Progresses damper projects from contract execution through completion and interactions throughout the life of any structural project.

Experience

  • 30 years Developing and Building the structural damper market, along with design, manufacturing, testing, and selling of fluid damper products.
  • Managed and supervised over 800 damper projects from inception to completion using specialized devices for structural control of civil engineering structures, including hundreds of applications to improve performance under wind, seismic, pedestrian and traffic shock or vibration, for numerous industrial and structural applications, found on/in buildings, bridges, stadiums, towers, hospitals and many other types of structures.
  • Directed and managed a national and international (world-wide) network of representatives, supporting them with business development, sales visits, technical support, advertising, promotion and general marketing efforts for their various marketplaces.
  • Provided Corporate Representation and Presentations at numerous conferences and meetings annually, including those held by SEAOC, ASCE, AIST, EERI, CTBUH, IBC, and many other international bodies.
  • Publications and Presentations include papers on structural design and control of building and bridge structures including response spectrum analysis/design.

Education

  • MS in Civil/Structural Engineering from University at Buffalo
  • BS in Civil Engineering from University at Buffalo
  • BS in Physics from Fredonia State University

Affiliations

  • SEAOC – Structural Engineers Association Of California
  • ASCE – American Society of Civil Engineers
  • AIST – Association for Iron & Steel Technology
  • EERI – Earthquake Engineering Research Institute
  • CTBUH – Council on Tall Buildings and Urban Habitat

Interests

  • Running 5k and Half-Marathons, Snow-Skiing, Boating and Slalom Waterskiing, Mountain Biking, Hiking, Kayaking and Canoeing, Camping, Sport-Bike (Motorcycle) Riding, and Craft-Beer “tasting”.  Winter weekends are spent coaching Downhill Ski Racing to youths.

Marcus Freeman

Technical Director

Responsibilities

  • Lead technical support efforts for structural engineers in areas of structural analysis with dampers, damper design, peer review and damper implementation (construction) for both new and retrofitted structures
  • Develop technical resources and guidelines for Taylor Damped Moment Frame design
  • Lead Research and Development efforts in advancing Damper implementation in building design

Experience

  • 8 years Structural Engineering design, analysis, and construction administration work with Magnusson Klemencic Associates
  • Lead design engineer experience on high rise residential, convention center, and aviation buildings in high seismic location
  • Registered Professional Engineer in Washington
  • Proficient with the design and detailing of steel moment frames, brace frames, and shear wall systems

Education

  • Virginia Polytechnic Institute and State University Master of Science, Civil Engineering, 2015 Specialization: Structures
  • Virginia Polytechnic Institute and State University Bachelor of Science, Civil Engineering, 2013

Affiliations

  • Structural Engineering Engagement and Equity Committee (NCSEA), Chair, 2021-present
  • SEAW Young Member Group, President, 2017-2018
  • NCSEA Susan Ann “Susie” Jorgensen Presidential Leadership Award – Nov 2023 Issued by National Council of Structural Engineers Associations (NCSEA)

Interests

  • Travel, live music, wine and bourbon tasting, cooking, vinyl collecting

Anthony Tiapon

Senior Project Engineer

Responsibilities

  • Supports clients and engineers with damper design by answering technical questions, providing ETABS support and providing pricing.
  • Performs Non-linear Response History Analysis in ETABS for verifying damper designs.
  • Generates educational materials regarding damper design.

Experience

  • 6 years of structural engineering design work at CYS Structural Engineers, Inc.
  • Experience with seismic and wind design.
  • Structural design experience in retrofit, wood, and steel structures.
  • Registered Professional Engineering in California.

Education

  • B.S. in Architectural Engineering, California Polytechnical State University, San Luis Obispo – 2016

Affiliations

  • Structural Engineers Association of California (SEAOC)
  • National Council of Structural Engineers Association (NCSEA)

Interests

  • Running, working out, hiking, going to concerts and museums, spending time with my dog.
Ben Covich Headshot

Ben Covich

Senior Project Engineer

Responsibilities

  • Assists engineers and clients with damper design, technical support, and pricing.
  • Conduct Non-linear Time History Analysis to verify damper designs.
  • Manage building, bridge and other infrastructure projects from inception to hand off at production.

Experience

  • Design of damper systems using ETABs and Modal Strain Energy methods.
  • Base isolation design (Lead Rubber Bearings and Sliding Pendulum Bearings).
  • Managed full scale testing projects at UCSD for Lead Rubber Bearings and iRDT dampers.
  • Designed, project managed, and full scale tested 2D and 3D isolation platforms at The University of Nevada Reno (UNR).
  • Seismic design of shear wall, reinforced concrete and steel structures in New Zealand.
  • Auto CAD drafting
  • Qualified New Zealand Carpenter focusing on renovation of high end residential homes, Historic Buildings and large scale commercial projects.

 

Education

  • Bachelor of Engineering (Civil), B.E (Hons), The University of Auckland – 2018
  • New Zealand Diploma of Engineering, N.Z.D.E (Civil) – 2014
  • New Zealand Certificate in Carpentry – 2012
  • Seismic Isolation Course CEE729 at UNR – 2020

Affiliations

  • New Zealand Society of Earthquake Engineers (NZSEE)
  • Structural Engineers Association of California (SEAOC)
  • National Council of Structural Engineers Association (NCSEA)
  • Earthquake Engineering Research Institute (EERI)

Interests

  • Anything Motorsport, Midget Racing in California and maintaining a racecar (2023 USAC Western States – Rookie of the Year) Motorcross, BBQ, House Project, Travel

Nathan Canney

Director of Structural Engineering

Responsibilities

  • Train and manage structural engineering team at Taylor to assist engineers in analysis with dampers.
  • Educational outreach and support for structural engineers interested in using dampers for seismic or wind applications.

Experience

  • Structural engineering design work at Magnusson Klemencic Associates (2 years), CYS Structural Engineers, Inc.(3 years) and various internships at Parsons Brinckerhoff Quade & Douglas, MA Wright Engineering, and Forel/Elsesser Engineers, Inc.
  • Registered Professional Engineering in California
  • Experience in structural design for new construction and retrofits, steel, concrete, wood and masonry structures. Design experience for seismic and wind using US and international codes.
  • Faculty in the Department of Civil and Environmental Engineering at Seattle University for four years, teaching undergraduate and graduate students courses including Statics, Mechanics of Materials, Residential Design, Ethics, Performance Based Earthquake Engineering and Building Systems.
  • Research focused on engineering education, engineering ethics and identity formation. Over 70 peer reviewed publications in conference proceedings and journals.

Education

  • Ph.D. in Civil Engineering, University of Colorado, Boulder – 2013
  • M.S. in Structural Engineering, Stanford University – 2010
  • B.S. in Civil Engineering, B.S. in Applied Mathematics, Seattle University – 2006

Affiliations

  • Structural Engineers Association of Central California (SEAOCC)
  • American Society of Civil Engineering (ASCE)
  • American Society for Engineering Education (ASEE)

Interests

  • Woodworking, family time, cooking spectacular meals, backpacking, travel and photography.

Konrad Eriksen

Structural Products Sales Director

Responsibilities

  • Heads up the Structural Business Development Team.
  • Develops Damper projects in the building, bridge and infrastructure markets from concept design through to contract execution.

Experience

  • 35 year’s experience in selling, development and manufacturing of dampers and base isolation systems throughout the world.
  • Built and ran Base Isolation and damper manufacturing facilities in New Zealand and USA.
  • Built and ran a BRB manufacturing plant in USA, contracting to Nippon Steel.
  • Developed and patented 2D and 3D isolation systems for equipment and supercomputers.
  • Introduced, manufactured, and tested viscous dampers through a technology transfer with a Japanese partner for the CPMC Hospital, CA.
  • Designed and built test rigs and presses with up to 4400-ton capacity.
  • 10 years of commercial construction engineering in Wellington, New Zealand specializing in constructability challenges, foundation design, concrete durability.
  • Extensive background in rigging, erecting tower cranes and structural steel.  Designed and executed heavy lifts.

Education

  • Bachelor of Engineering (civil) Canterbury University, New Zealand

Affiliations

  • Structural Engineers Association of Northern California (SEAOC)
  • Earthquake Engineering Research Institute (EERI)

Interests

  • Enduro motorcycling, restoring, building and riding Ducati motorcycles, playing guitar, fishing, shooting, hunting, woodworking.

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links