Resources

Technical Papers

76. Simulation, Development, and Field Measurement Validation of an Isolation System for a New Electronics Cabinet in the Space Shuttle Launch Environment within the Mobile Launch Platform

This paper describes the dynamic analysis of an isolator system for the cabinet-mounted low voltage power switchgear in the Space Shuttle Mobile Launch Platform (MLP). The addition of electronic sensing and control components to this cabinet combined with the harsh vibration environment experienced during a Shuttle launch necessitated a six degree of freedom isolation system to prevent the spurious tripping of breakers. An added benefit of the isolation system is that it provides vibration isolation during the Shuttle’s approximately three mile journey between the Vehicle Assembly Building (VAB) and either of its two launch pads. The isolation system was designed, built, and integrated within the MLP. Broadband dynamic measurements were made during an actual Shuttle launch to verify the effectiveness of the isolation system and to validate the predictions of the analysis. Measurements made during the launch of STS-115 on September 9, 2006, affirmed the effectiveness of the isolators and validated the predicted performance of the isolation system.

Share This Post

More To Explore

White Paper

21. Seismic Response of Structures with Supplemental Damping

This paper presents a review of supplemental damping devices used for the control of the seismic response of structures. The mechanical properties of these devices are discussed and considerations in the design of energy absorbing systems are presented. Conventional structures passively resist earthquakes through a combination of strength, deformability and energy absorption. They have very little damping, so elastic energy absorption is small. Strong earthquakes deform these structures well beyond their elastic limit through localized plastic hinging, which results in increased flexibility and energy dissipation. Most of the earthquake energy is absorbed by the structure through localized damage of the lateral force resisting system. This is somewhat of a paradox in that the effects of earthquakes (i.e. structural damage) are counteracted by allowing structural damage. Structural performance can be greatly improved if a large portion of the input energy can be absorbed, not by the structure itself, but by some type of supplemental device. This paper describes a number of ways to do this, including friction devices, yielding metal systems, elastomeric viscoelastic dampers and fluid viscous dampers.

Read More »
White Paper

23. Semi-Active Fluid Viscous Dampers for Seismic Response Control

The addition of passive damping to a structure greatly increases its earthquake resistance. It is possible to get further increase through an active or semi-active control system for the dampers. Semi-active damping is preferred due to low external power requirements and fail-safe operation. This paper describes the history of the successful use of semi-active fluidic control devices in military applications and how this technology has been adapted to earthquake hazard mitigation. Testing of a semi-active continuously adjustable damping device through fluid orificing is described. Mathematical models of the behavior of the device are also presented.

Read More »
White Paper

27. University at Buffalo – Taisei Corporation Research Project on Bridge Seismic Isolation Systems

This paper describes the first part of a project to produce a class of passive sliding seismic isolation systems for bridges. This includes experimental verification of the systems by large scale shake table testing, analytical techniques for interpretation of the experimental results, and design procedures for sliding bridge isolation systems. A quarter length scale bridge model was tested on a shake table. Restoring force was provided by various means. First, spherically shaped sliding bearings (known as FPS bearings) were used to provide restoring and frictional forces within a compact unit. Next, flat sliding bearings were combined with various devices placed between the deck and the pier to provide restoring force and additional energy dissipation capacity. These devices were in the form of: a) arc-shaped rubber elements between a moving central rod and a cylindrical housing, b) wire rope springs, c) fluid spring-damper devices and d) fluid viscous dampers.

Read More »
White Paper

29. Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers

This 206 page report presents the results of an extensive study on fluid viscous dampers. A series of component tests with various dynamic inputs was performed to determine the mechanical characteristics and frequency dependencies of the dampers. In addition, temperature dependencies were evaluated by varying the ambient temperature of the damper during component testing. Based on these component tests, a mathematical model was developed to describe the macroscopic behavior of the damper. Earthquake simulation tests were then performed on one story and three story steel structures both with and without dampers. The addition of supplemental dampers significantly reduced the response of the structure for both interstory drift and shear forces. The experimental responses correlated well with analytical predictions.

Read More »

Thank You!

A Taylor Devices Representative will be in touch shortly.